- tensor of projective curvature
- тензор проективной кривизны
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Complex projective space — The Riemann sphere, the one dimensional complex projective space, i.e. the complex projective line. In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a … Wikipedia
Scalar-tensor theory — Scalar tensor theories are theories that include a scalar field as well as a tensor field to represent an interaction, especially the gravitational one. Tensor fields and field theory Modern physics tries to derive all physical theories from as… … Wikipedia
Torsion tensor — In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet Serret formulas, for instance, quantifies the twist of a curve… … Wikipedia
Sectional curvature — In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two dimensional plane σp in the tangent space at p. It is the Gaussian curvature of… … Wikipedia
Ricci decomposition — In semi Riemannian geometry, the Ricci decomposition is a way of breaking up the Riemann curvature tensor of a pseudo Riemannian manifold into pieces with useful individual algebraic properties. This decomposition is of fundamental importance in… … Wikipedia
Spacetime symmetries — refers to aspects of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important, for example, in simplifying solutions to many problems. Spacetime symmetries are used to simplify problems and … Wikipedia
List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… … Wikipedia
Affine connection — An affine connection on the sphere rolls the affine tangent plane from one point to another. As it does so, the point of contact traces out a curve in the plane: the development. In the branch of mathematics called differential geometry, an… … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Differential geometry — A triangle immersed in a saddle shape plane (a hyperbolic paraboloid), as well as two diverging ultraparallel lines. Differential geometry is a mathematical discipline that uses the techniques of differential and integral calculus, as well as… … Wikipedia
Connection (mathematics) — In geometry, the notion of a connection makes precise the idea of transporting data along a curve or family of curves in a parallel and consistent manner. There are a variety of kinds of connections in modern geometry, depending on what sort of… … Wikipedia